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Most recently, the book of Sylvie Ruette Chaos on the interval
(Amer. Math. Soc., ser. University lecture 67, 2017) appeared,
the aim of which is “to survey the relations between the various
kinds of chaos and related notions for continuous interval maps”.

However, the book does not even mention the research of this
talk author published back in the sixties of the past century.
This research showed a huge variety of the trajectory attractors
(i.e., ω-limit sets) and proved the great complexity of their
attraction basins, in particular, a very intricate interweaving of
different basins.

All this is obtained with the use of descriptive set theory and gives
a good idea of the complexity of the one-dimensional chaos.
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H e r e :
attracting set = attractor of a trajectory = ω-limit set of a trajectory

attracted set = basin of an attractor = subset of the phase space
consisting of all trajectories with the same ω-limit set



We consider maps f ∈ C 0(I , I ) where I is a closed interval under
the condition that the topological entropy h(f ) is positive. This
means that the one-dimensional dynamical systems given by f are
complex.

As well known, the condition h(f ) > 0 is equivalent to each from
the following:

(a) f has a cycle of period 6= 2i , i ≥ 0,

(b) f has a homoclinic trajectory,

(c) there exist m ≥ 1 and closed intervals J,K ⊂ I such that
f mJ ∩ f mK ⊂ J ∪ K .



In the theory of dynamical systems, along with open sets (for
example, basins of sinks, wandering sets) and closed sets (ω-limit
sets, nonwandering sets, centers of dynamical systems), sets with
more complicated structure are considered.

There appear Fσ sets, which are unions of no more than countably
many closed sets, such as the set of all periodic points, Gδ sets,
which are intersections of no more than countably many open sets,
such as the set of all transitive points of transitive systems, Fσδ
sets, which are intersections of no more than countably many Fσ
sets, etc.

We also use the Baire classification of sets according to which
open sets and closed sets together with all sets being both Fσ and
Gδ constitute the first class. The second class consists of sets that
are either Fσ or Gδ but not both, and sets that are at the same
time Fσδ and Gδσ but do not belong to the first class. The third
class consists of sets being either Fσδ or Gδσ but not both, and
sets that ... Further classes are defined in a similar way.



Usually upper descriptive estimates are obtained relatively easy
even for dynamical systems on an arbitrary space X with countable
basis of its topology, and in [1], such upper estimates for systems
on arbitrary compacts was obtained. Namely:

(a) if an attractor A is maximal, i.e. there is no attractors Ã ⊃ A, then
the basin B(A) is a Gδ set;

(b) if an attractor A is locally maximal, i.e. there exists a neighborhood
of A, not containing attractors Ã ⊃ A, then the basin B(A) is both a
Fσδ set and a Gδσ set;

(c) in any case, basin B(A) is (no more complex than) a Fσδ set in X ,

i.e. it always can be represented as an intersection of no more than

countably many unions of no more than countably many closed sets.

But the proof of the accessibility of these estimates at least for a
certain class of systems, and thus, the proof of the complex
interlacing of the basins of investigated attractors, is really a very
complicated problem even in dimension one ...



Nevertheless, as it turned out, all these estimates are accessible for
one-dimensional systems when f has a cycle of period 6= 2i .
Namely, it was shown in [2-4] that in this case there exists a
maximal attractor Amax containing a cycle and so containing
continuum many attractors of kind (c); the basin of every such (of
kind (c)) attractor is a third class set, i.e., is a Fσδ set but not a
Gδσ set. This means that

1) here we have the very complex curved interlaced trajectories
with different asymptotic behavior, and

2) from the viewpoint of descriptive theory, one-dimensional
chaos is as complex as is many-dimensional or even
infinity-dimensional chaos.



It can be noted that statement (a) is proved very simply, and
below we offer this proof, as an example of obtaining descriptive
estimates for sets.

Let Σ be a countable basis in X formed by open sets and
let ΣA be the part of Σ “intersecting” A :

ΣA = {σi ∈ Σ : σi ∩ A 6= ∅,
∞⋃
i=1

σi ⊃ A}.

If x ∈ B(A), then {f k(x)}k=∞k=0 intersects with each σi , i ≥ 1,
and hence, B(A) ⊆ Qi =

⋃∞
k=1 f

−k(σi ), i = 1, 2, . . . .

If x 6∈ B(A), i.e. Ax 6⊇ A, then there exists a point z ∈ A, not
belonging to Ax , and hence there is σi ′ 3 z not containing points
of the trajectory {f k(x)}k=∞k=0 ; thus x 6∈ Qi ′ , and x 6∈

⋂
Qi .

Hence, B(A) =
⋂∞

i=1Qi and, as far as Qi are open sets,
B(A) is a Gδ set.



Let us dwell on statement (c).

In [2], it was proved that even basins of the simplest attractors –
cycles – can be very complex, namely, can be a set of the third
class in the Baire classification. Later in [3], it was shown that
such situation is typical, namely, even for quadratic maps, the
basin of any attractor that contains a cycle and is not maximal or
locally maximal (which is typical where h(f ) > 0), is a set of the
third class.

However, the above case of cycles is somewhat exceptional, it can
happen with a cycle that is limiting for cycles of the same or
doubled period, for example, with maps of the same type as the
map f : x 7→ x − x sin(1/x)), whose fixed point x = 0 is limiting
for its other fixed points.



We refer to a fixed point α as a fixed point of mixed type or an
attracting-repulsing fixed point if there exist two sequences of points
y1 > y2 > y3 > ... and z1 > z2 > z3 > ..., i = 1, 2, ..., tending to α

such that α ≤ f (yi ) ≤ yi+1, zi ≤ f (zi+1).



Recall the known Baire‘s example of a third class set.

Let E consist of the irrational points of the interval (0, 1), which is a Gδ

set (in the usual topology). For every point of E , there corresponds a
unique continued fraction of the form

1

n1 + 1
n2+

1
n3+...

.

The Baire set B of third class consists of points from E for which
nj →∞.

Let us take the map g : E → (0, 1) defined by g : x 7→ {1/x}, where

{·} is for the fractional part of a number. The map g is continuous (on

E ) and g(E ) = E . Indeed, if x = 1
n1+

1

n2+
1

n3+...

, then g(x) = 1
n2+

1
n3+...

.

Thus the Baire set B is constituted by the points x ∈ E for which

g jx → 0 as j →∞, i.e., in our notations, B is just the set B({0})
— the basin of the fixed point x = 0.



The Baire criterion for belonging a set to the third class.

Let pj1j2...jk be perfect nowhere dense on R or J sets, and

1) pj1...jk−1jk ⊂ pj1...jk−1
,

2) pj1...jk−1jk is nowhere dense on pj1...,jk−1
,

3)
∞⋃

jk=1
pj1...jk−1jk is everywhere dense on pj1...jk−1

.

The set P =
∞⋂
k=1

∞⋃
j1,...,jk=1

pj1...jk is of Baire’s third class.



Theorem. If a map has an attracting-repulsing fixed point,
then the basin of this point is a third Baire class set.

Road to chaos through the “creeping” feedback (nonsmooth realization)

We can see in this figure how the repulsion from the fixed point (x = 0)

and the attraction to it occur (“creeping” feedback). It remains to show

that the set of points x for which f i (x)→ 0 when i →∞ can be

represented as an union of two sets, namely, a set that satisfies to the

Baire criterion for being in the third class and a set of a Baire class ≤ 2.

It is this complicated problem that is solved in [2].



Theorem. If an attractor A is not maximal, contains a cycle and
any neighborhood of A contains an attractor Ã ⊃ A, then the
basin B(A) is a third Baire’s class set.

For one-dimensional systems, only the irreversibility of f gives
an opportunity for the feedback, that opens the way to chaos.

In our case, there exists a maximal attractor Amax ⊃ A which
contains points x such that f −1(x) consists of at least two points
and in such way there is a “fast” feedback on Amax . Here we
already deal with a feedback not only for cycles (i.e. attractors
consisting of a single trajectory), but also for more complicated
attractors. The simplest variant of this is a homoclinic trajectory
together with its limit “attracting-repulsing on Amax” cycle or a
closed heteroclinic contour including several cycles. Amax always
contains such kind of attractors.

The “fast” feedback on Amax generates a “creeping” feedback
for attractors which are not maximal or locally maximal.



In [3], the above theorem is proved using [2], especially the
corresponding theorem for cycles.

Thus, the basin of every attractor A ⊆ Amax is dense on Amax ,
in particular, B(Amax) is a Gδ set of the second Baire class, for
every locally maximal attractor Almax , the basin B(Almax) is a
both Fσδ and Gδσ set, and hence, of the second Baire class.

For any attractor A ⊂ Amax that is not locally maximal and
contains a cycle, the basin B(A) is a Fσδ set of the third Baire
class. However, basins of any two such attractors A′,A′′,
A′ ∩ A′′ = ∅, are separated by sets of the second Baire class,
namely, there exist two Fσ sets F ′,F ′′ ⊂ Amax , F ′ ∩ F ′′ = ∅,
such that B(A′) ⊂ F ′ and B(A′′) ⊂ F ′′.



Of course, information about attractors themselves and their
interrelationships should be an essential part of the descriptive
theory of chaos.

In [4] and [5, sect.4], the aggregates M and M′ of all attractors and,
correspondingly, all locally maximal attractors (which are contained in
Amax) were considered.

M contains continuum many locally maximal attractors other than
cycles; each of them is a Cantor set on which the periodic points set
is everywhere dense.

M contains continuum many minimal attractors other than cycles
and hence being Cantor sets.

There is a natural partial ordering in M:
if A′ ⊂ A, then A′ precedes A in M.

The maximal attractor Amax has no immediate predecessor in any

maximal chain. Every maximal chain from M is countable or has the

power of continuum. The set of attractors immediately succeeding every

attractor 6= Amax has the power of continuum.



Any maximal chain from M′ is countable and similar
to the rational numbers set :

for each A′ ⊂ A′′, there is A′′′ such that A′ ⊂ A′′′ ⊂ A′′ ...



Several remarks more.

In [3, theorem 2], and in [5, theorem 3.2.4], there are stated:
for any A ∈M containing a cycle, and ε > 0, there exists a cycle
P ∈M such that the Hausdorf distance beetween A and P is
< ε.

In [5, sect. 4.1], lemma 6 states:
for any A ∈M containing a cycle, and ε > 0, in ε-neighborhood
of A, there exists an attractor A′ ⊇ A, A′ ∈M′.

Thus, if we use the Hausdorf metric for M, then we can state:
both M′ and the aggregate P that consists of all cycles from M are
dense in M (at least if we remove from M all attractors containing
no cycles, about which we can not now say anything except that
there exist very many too such attractors).



However, unfortunately, the proofs of the results represented in [4]
were never published, although the proofs were completely
represented in the author’s doctoral thesis from 1966. The public
defense of this thesis was held in May, 1967, exactly 50 years ago,
and then, probably, it made sense to “stop”, “look around” and,
probably, join the more popular at this time topics, for example,
smooth dynamical systems. Just at that time, and even in Kyiv,
Smale appeared with his Smale horseshoe.

In 1971, the author was the main organizer of the summer school
on dynamical systems. In 1972 and in 1976 (2d ed.), the lectures
of this school was published and later even translated by the Amer.
Math. Society (Alekseyev V.M., Katok A.B., Kushnirenko A.G.,
“Three papers on dynamical systems”, AMS Transl.(2) 116, 1981).

And already in 1973, author’s PhD student V.S.Bondarchuk
submitted his thesis “Invariant sets of smooth dynamical
systems” ...



A substantial part of this thesis was represented in the papers
(in Russian):

[6] Bondarchuk V.S., Sharkovsky A.N., The partially ordered system of
omega-limit sets of expanding endomorphisms, in Dynamical systems and
questions on the stability of the solutions of differential equations, Inst.
Mat. Akad. Nauk USSR, Kiev, 1973, 128-164.

[7] Bondarchuk V.S., Sharkovsky A.N., Reconstructibility of expanding
endomorphisms from the system of omega-limit sets, ibid., 28-34.

The papers [6] contained almost all statements from [4] and used the

same way of proof as in sect. 4.1 of [5]. Thus, methods for proving the

main results of [4] were actually published still in 1973 although already

in application to a few other subjects. Another methods needed to be

used by V.S.Bondarchuk were the method of Markov partions and

topological Markov chains developed by Ya.G.Sinai and appropriately

modernized by V.S.Bondarchuk. In [7], the algorithm for map

reconstructing, developed in [5, sect. 4.2] was used; the map f has so

many attractors (i.e., ω-limit sets), that the function f (x) really can be

restored (pointwise) if to have its attractors only !



σ-attractors
In dynamical systems theory, along with ω-limit sets of trajectories
(attractors A), are considered other sets that also characterize the
asymptotic behavior of trajectories, for example, the so called
“statistically limit set” of a trajectory, or σ-attractor Aσ(x), i.e., the
smallest closed set such that

lim
N→∞

1

N

N−1∑
i=0

χU(f i (x)) = 1

for any open neighborhood U of this set. For x ∈ X always
Aσ(x) ⊆ A(x). In many cases, Aσ(x) 6= A(x), so, if P is a cycle and
Γ(P) is a homoclinic trajectory to P, then Aσ(x) = P for every x such
that A(x) = Γ(P).

Usually, it is more difficult to obtain descriptive estimates for the basins
of Aσ than of A. Even for the simplest intermixing one-dimensional
map x 7→ 2x(mod 1), the question: “Is the set of points x ∈ [0, 1] for
which Aσ(x) = {0}, a set of the third Baire class?” remains open.

For the same map, the set {x ∈ [0, 1] : Ax = [0, 1]}, i.e. B([0, 1]),

as well known, is a dense on [0, 1] Gδ set. What are σ-attractors for

x ∈ B([0, 1]) ?



Read these!
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